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Abstract. We present results of a molecular-dynamics study where we calculated the dynamic 
structure of six states of liquid rubidium. The systems are chosen along the liquid-gas 
coexistence curve; four of these states have been considered in a recent neutron-scattering 
experiment by Winter er al. The intemwmic forces are based on an Ashcroft empty-core 
pseudopotential. This present paper-the first of two contributlons-mntains results for 
the collective correlation functions. For the dynamic structure factor S(y,o) we find for 
temperatures up to -1700 K very good quantitative agreement with the experimental resulll. 
Discrepancies which we encountered in the high-temperature state (1873 K) may undoubtedly 
be attributed to the inadequacy of the underlying interaction: near the critical point a metal/non- 
meld tmnsition occurs for Rb and the intentomic forces (based on mean electronic density) we 
used are no longer able to describe the complex changes in the electronic structure correctly. We 
find that the behaviour of the intermediate scattering function near yp (the position of the main 
peal: in the structure factor S(q)) may be very well understood in terms of a simple memory. 
function model, involving static properties only. The interpretation of both the longitudinal 
and transverse current correlation functions using reliable hydrodynamic and memory-function 
models has revealed that, for intermediate- and high-lemperature states. the temperature influence 
enters only via the static moments of the comelation functions while the parameters of the models 
(which are determined in  n least-squares fit to the correlation functions) turn out to be practically 
temperature independent. Once more we experience that it is extremely difficult to determine 
elastic and thermodynamic quantities from the computer data of the correlation functions in a 
reliable and accurate way: the quality of the results may be very sensitive to the underlying 
model: results obtained via different routes and interpretations may differ substantially and 
discrepancies with experiment of IC-20% have to be considered U normal. 

1. Introduction 

In particular during recent years, considerable progress has been made in both experimental 
and theoretical investigations on the dynamic structure of liquid metals. If we consider only 
the alkali metals, nearly all elements of this group have been studied in neutron-scattering 
experiments: Li [ I ,  21, Na [3, 4, 51, Rb [6, 7, 8, 91 and Cs [IO, 11, 121. On the theoretical 
side, the dynamic properties of liquid alkali metals have been studied by means of computer 
experiments (molecular-dynamics-MD-simulations); such theoretical experiments have 
been performed mainly on Rb and were started with the pioneering work of Rahman [13, 
141 and were followed by studies by Mountain and co-workers [ 15, 161 and Balucani er al 
[ 17, 181: all these investigations considered Rb near the melting point and in the supercooled 
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region; recently, a study on the dynamic properties of liquid Cs just above the melting point 
has been published by the present authors [19, 201. Furthermore only recently a systematic 
study of the dynamic properties of all liquid alkali metals (except for lithium) near the 
respective melting points 121, 221 and a study on the dynamic properties of liquid lithium 
[23. 241 have been published. Due to the increased computational power of workstations 
longer runs and larger ensembles have improved the accuracy of the results substantially. 
Furthermore, hydrodynamic theories (HF) or a memory-function analysis (MF), or-still 
more sophisticated-mode-coupling (MC) theories [2S, 261 make a better interpretation of 
the raw computer data (i.e., of the dynamic correlation functions-CFs) possible. We may 
conclude that both neutron-scattering and computer experiments produce nowadays results 
of the same degree of accuracy and may be considered as equal partners in studying the 
dynamic properties of liquids. 

The present study has primarily been motivated by the inelastic neutron-scattering 
experiment on Rb by Winter and co-workers [8,9]. Their study is of fundamental importance 
insofar as it represents the firsf investigation on dynamic properties of a liquid metal up 
to the critical region: the states they have considered are chosen along the coexistence 
curve and range from intermediate temperatures (1073 K) up to near the critical point. This 
critical region is in the case of rubidium (and also of caesium) of special interest: almost 
simultaneously with the liquidgas transition Rb undergoes a metavnon-metal transition. The 
critical data of these two elements (e.g.. R b  7’‘ = 2017 K and pc = 290 kg m-3 [271) are- 
in contrast to the lighter alkali metals-found to be within the limits of static temperatures 
and pressures available in the laboratory This transition can be inferred from measurements 
of the electric conductivity. magnetic susceptibility and optical reflectivity [28, 29, 30, 
31. 321. These experimental results indicate the presence of electronic correlation effects 
which can be considered as the precursors of the metallnon-metal transition. From the 
experimental results of the static structure of expanded liquid Rb and Cs [33, 341 one 
also finds a nearly constant number of nearest neighbours and an increasing distance 
of nearest neighbours with rising temperature. In the d y m i c  structure experimentalists 
observe for low and intermediate temperatures phonon-like collective modes far outside the 
hydrodynamic region, visible as side peaks or shoulders in S ( q , w ) :  even beyond qp (i.e., 
the position of the main peak in the static structure factor S ( q ) )  a shoulder is visible which 
might he interpreted as an inelastic peak and hence as collective modes ‘beyond’ qp (cf. also 
the experimental study on liquid Cs [IO, 11, 121). However, for the highest temperature 
investigated (1873 K with a density of about twice the critical density), a change in the shape 
of S(q, w )  is observed: a broad side peak develops out of the structureless scattering function 
observed for lower-temperature states at q - 1 .&-I. This transition near the critical point 
must of course be caused by the interaction forces: this is, e.g., reflected in the breakdown of 
the results obtained in the ‘nearly-free-electron’ picture for the conductivity of the expanded 
liquid metals [35, 361, or the failure of simple interatomic forces used when describing the 
rise of S(q) in the low-q limit [37, 381 via standard liquid-state theories. 

The aim of this theoretical study is not only a simple comparison between theoretical and 
experimental results: the principal aim of this study is rather to find out how the behaviour 
of dynamic CFS and several elastic and thermodynamic properties change as we expand the 
system from the melting point up to the critical region seen from the point of view of a 
computer experiment. A further important motivation for such a study was the fact that 
several dynamic (both single-particle and collective) CFS may be determined in a computer 
experiment, but not in a neutron-scattering experiment. Experimental and theoretical results 
together should then offer a deeper insight into the dynamic behaviour of these Rb states. 

In this contribution (which we have split up into two papers for reasons given below), 
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we have investigated the temperature range from the melting point up to 1873 K, considering 
six states; four of these states are exactly the same systems as in Winter's experiments. The 
present study may also be regarded as an extension of earlier investigations on liquid Rb 
which were primarily concerned with states near the melting point and/or the supercooled 
regime. The questions we are interested in here are the following: (i) how do the results 
of the computer experiment compare with the neutron scattering data? (ii) for the case 
where differences between these two sets of data are encountered, what might be a possible 
explanation for these discrepancies? and finally, (iii) what can we learn from computer 
experiments which is not already accessible from real experiment (and vice versa) and 
hence justifies those rather expensive calculations. We hope to answer these questions 
satisfactorily in the two papers. 

The contribution is split up into two parts: the first paper contains results for the 
collective CFS, while the second part is devoted to the single-particle CFS. In the first 
paper we have compiled results of the collective dynamic CFS (Le., the dynamic structure 
factor S(q. U )  and the longitudinal/transverse current CFs C,/,(q, r ) )  and a comparison of 
the theoretical data with experimental results. The subsequent paper [39]  deals entirely 
with the theoretical results of the single-particle CFs (i.e., the self-dynamic structure factor 
$(q .  w )  and the velocity autocorrelation fUnCtiOn-VACF-Y(t)). However, due to the small 
incoherent scattering length no experimental results are available for the single-particle CFs. 

In this theoretical study the interatomic forces are based on a local pseudopotential 
(proposed by Ashcroft [40]), using the Ichimaru-Utsumi expression for the exchange- 
correlation correction [41, 421. We are well aware of the fact that this potential (along 
with a classical MO simulation) is not able to describe those complicated changes in the 
electronic structure which cause the metahon-metal transition. For the present study we 
have nevertheless chosen this type of interatomic force: up to now no satisfactory models 
have been proposed of how to construct interatomic potentials covering the temperature 
range from the triple point up to the critical region; hence, we rather prefer to use the 
Ashcroft potential in order to describe all states in a coherent manner by the same type of 
interaction. We expect that the failure of this simple model should affect-similarly as in a 
study on the static structure (Rb: [ 3 8 ] t o n l y  the high-temperature state. 

The simulation has been performed using a standard microcanonical MD code with 
the usual periodic boundary conditions; we used throughout 1372-particle ensembles. The 
equations of motion were integrated over 100 000 time steps At  (At  ranging from 3 to 6 
femtoseconds). 

In this first part of the study we find up to intermediate temperatures very good agreement 
between the theoretical and experimental results IS, 91; only for the highest temperature 
(1873 K) are substantial discrepancies encountered. These differences may be clearly 
attributed to the underlying interatomic potential, i.e., to a potential which does not account 
for local variations of the forces arising from critical density fluctuations encountered in the 
critical region. A similar good agreement with Winter's data [8, 91 and earlier experimental 
results [6, 71 of the dispersion relation determined from the longitudinal current CFs is 
observed. The computer data for the dynamic CFs are interpreted in terms of hydrodynamic 
(HF) and of memory-function (MF-n, n being the number of parameters involved) models. 
It turns out that the model parameters are-e.xcept for the lowest-temperature states- 
practically temperature independent; temperature effects which are observed for the dynamic 
CFS must hence enter via the other constituents of these models, i.e., the static moments 
of the CFs. In conjunction with these observations it is furthermore worthwhile to note 
that several aspects of the dynamic CFs may often be explained~in both a qualitative 
and quantitative way on the grounds of models based entirely on the static structure. In 
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contrast to earlier results obtained for dynamic properties of liqoid metals near the melting 
point, we find that for higher temperatures there exists a gap in q-space where neither 
longitudinal nor transverse collective modes are observed (while for low temperatures these 
ranges do overlap). Once more we experience that a reliable and accurate determination 
of thermodynamic and elastic properties from raw computer data turns out to be extremely 
difficult (i.e., from an extrapolation of generalized q-dependent parameters towards 4 = 0); 
in a few cases MC approaches have been used to extract such quantities. In general we 
found that agreement with experimental data is acceptable (i.e., differences between I O  and 
20% are encountered); results for the kinetic shear viscosity ti show a remarkably good 
degree of agreement. 

The paper is organized as follows. In the following section we present the interatomic 
forces of the Rb atoms as well as details about the numerical parameters of the simulation. 
This section also contains the definitions of the collective dynamic CFs; for a more complete 
presentation we refer the reader either to our previous study [19, 201 (where we have used 
exactly the same definitions) or to standard text books [E, 261. In section 3 we present 
and discuss our results and compare them with the experimental data. including structure 
as well as thermodynamic and elastic properties. The paper is concluded with a summary. 

G Kahl and S Kambayashi 

2. The  model, the simulation and the correlation functions 

2.1. Interatomic forces 

We have studied six different Rb states (denoted henceforward by I-VI), which are 
characterized by temperatures T and mass densities n;  these parameters have been taken 
from [43] and are compiled in table I. State I is chosen to be 'near' the system treated by 
Rahman [13. 141; states I11 to VI correspond exactly to the systems which were treated in 
the experimental study of Winter eral  [S, 91. 

Table 1. Temperature 7 and mass density n of Ule six Rb states 1 to VI investigated in this 
study. rcut is ole cut-off radius for the potenlial and Ar is the time increment used in the MD 
simulation (cf. text). 

System T (K) n R g  m-') r,., (A) Ar (s) 

I 350 1460 16.72 5 Y 10''~5 
I I  373 1440 16.76 6 Y 

111 1073 1130 17.44 3 x 
I V  1373 980 17.80 3 x 10-15 
V 1673 830 18.40 3 10-15 
VI 1873 640 19.00 3 x 

The interatomic forces of the Rb atoms are based on pseudopotential theory: we use the 
Ashcroft empty-core pseudopotential [40] and the Ichimaru-Utsumi parametrization for the 
local-field corrections to the dielectric function [41, 421 for reasons discussed in [19, 201. 
The core radius of the pseudopotential, rc, which is the only free parameter of the model, 
was chosen to be 2.47 au. This choice is justified as follows: (i) this value provides good 
agreement for the static structure of liquid Rb between theory and experiment [38] over a 
large temperature range (i,e,, up to -1700 K), (ii) it guarantees a zero-pressure condition 
for the solid state [44] and (iii) it yields values for the longitudinal and transverse phonon 
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frequencies of the solid state which are in good agreement both with expertmental results 
[45] and with data obtained via other, more sophisticated pseudopotential methods (such as 
the generalized pseudopotential theory [46]). The respective values of these Frequencies are 
compiled in table 2. In contrast to state-independent potentials such as the Lennard-Jones 
systems (U) we observe that for higher temperatures the first minimum of the reduced 
potential again becomes deeper due to the decrease in electron screening of the ion cores; 
the position of the minimum and hence the position of the main peak in the PbF are found 
to be rather insensitive to temperature. 

Table 2. Longitudinal (L) and transverse (T) phonon frequencies in ps-' for Rb at the Brillouin- 
zone boundary. calculated from the 'generalized pseudopotenrial theory' 1461 (a) and From this 
model potential (b) and as obtained from experiment 1451 (c). 

(a (b) (C) 

L IlWl 1.35 1.385 1.464 
r[llO] 1.49 1.500 1.461 
TI [IOOl 0.27 0.340 0.367 
T? 11001 0.92 0.960 0.977 

1873 K 

1673 K 

13i3 K 

1073 K 

3i3 K 

350 K 

I 

I 

I 
I 

~ l t l l ~ t l l l ! t l l l ~ t ' l t ~ l ~ ' l l  

D 1 2 9 [A-'] 

Figure 1. y-vectors considered in the present (full bars) and subsequent paper (full and broken 
bars) for Rb st~tes I-VI. The height of each bar is proponiond to the respective Nu. 
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3% I< 

373 K 

1073 I< 

1373 I< 

1673 I< 

0 
0 5 r l k ' l  

Figure 2. Static structure factors S(q) (= o~~(y ) .  the zem-order moment of the intermediate 
scattering function F(y. I ) )  as functions of y for Rb slates I-VI. 

2.2. The correlation functions 

Static CFs (i.e., the PDF g ( r ) )  were obtained by averaging every 40 Af. The Fourier transform 
(n) of g ( r )  is the static structure factor S(q). p is the number density and M is the mass 
of the Rb atoms (n = p M ) .  The position of the main peak of S ( q )  will be denoted by qp, 

2.3. The simulation 

The simulation has been performed using a standard microcanonical MD code with the 
usual periodic boundary conditions; the equations of motion have been integrated by means 
of a fourth-order predictor-corrector Gear algorithm 1471. For all systems 1372-particle 
ensembles have been considered. The runs have been performed over 100 000 time steps 
Az; At varies from 3 to 6 femtoseconds (cf, table 1 ) .  Unless an energy conservation for 
the entire MD run of less than 0.01% was achieved the run was discarded. Both static and 
dynamic CFs were calculated by averaging over time, invoking the ergodic hypothesis of 
the equality of time and ensemble averaging. Temperature and energy were recorded during 
the simulation run, which enabled us to obtain further information on the system. The grid 
size of the tabulated potentials was 0.04 A. The potentials were truncated at radii reut which 
are the respective sixth nodes of O ( r )  (cf. table I), representing 32.7 % (I) to 28.3% (VI) 
of the simulation box length; at these distances the potentials have dropped to 0.3% (I) to 
0.17% (VI) of the value of O ( r )  at the first attractive minimum. 
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0 
0 I 2 

1si3 K 

1373 I< 

1073 K 

373 K 
_ - - - -  _ _ - -  

LO K 

0 1 2 9 IN-$] 

Figure 3. Second-order moments o;,(y) = 4- (longitudinal-left. ~msverse- 

righl) as functions of q for Rb states I-VI. The momenl oi(y) = (8; = ( B M J - '  being 
lhe thermal speed) is indicated as a broken line in the right-hand panel. 

The dynamic CFs have been calculated as functions of q on a discrete q-grid; these 
values have to be compatible with the periodic boundary conditions. Due to technical 
reasons we have not taken into account those q-values with more than 18 directions Nq 
with the same modulus q. The q-values considered in this study are depicted in figure 1 
for systems 1 to VI; the Nq values range from 4 to 18. 

The FT of the density (,09(t)) and the current operator ( j 9 ( t ) )  (for details cf. [ZO, 251) 
were recorded every second time step. From these quantities the intermediate scattering 
function F ( q ,  t )  and the longitudinal/transverse current CFS C,,,(q, t )  were calculated.These 
CFs have been recorded over 1024 At .  The dynamic CFs have been obtained by shifting 
origins by 4 At  (cf. equation (7) of 1201). Furthermore an averaging over q-vectors with the 
same modutus has been performed for the determination of the dynamic CFS. The moments 
o;f(q) and q71(q) (of F ( q ,  t )  and of the current CFs) were calculated from @ ( r )  and g ( r )  
using the standard relations [ZO]. Moments involving static CFS of order higher than two 
(i.e., beyond the PDF) have not been taken into account. 

The spectra C&. w )  (i,e., the FTS of Cj,,(q, t ) )  show for all q-values a maximum 
for w > 0, while for S ( q ,  w)  this maximum may not be resolved for all q-values. These 
maxima recorded as  functions of q are called dispersion relations and will be denoted for 
the respective CFS by U;;@) and we(q). 

The dynamic CFs have been studied and interpreted in terms of HF and MF models as 
outlined in 125, 2.61. using the same notation as in 12.01: (i) the HF model for S(q, o) (and 
Cl(q,o))  contains the following elastic and thermodynamic parameters: y = C,/C,, the 
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Figure 4. Intermediate scattering functions F ( y ,  t) as functions of q and 1 for the following Rb 
smtcs (a) l(350 K) and (b) IV (1373 K). 

ratio of the specific heats, the thermal diffusivity DT, the sound attenuation coefficient r 
and the adiabatic velocity of sound cs. The HF model for C,(q. 0 )  contains one single 
parameter, the kinetic shear viscosity v (= qfpM, q being the shear viscosity); (ii) for 
the MF models, one- and t h r e q x " e r  expressions (MF-1 and MF-3) have been used for 
both Q(q, t )  and C&, f). In the one-parameter case, the parameters represent relaxation 
times q (q); the three-parameter models contain one further relaxation time (which turns 
out to differ from the first one by one or two orders of magnitude) and a mixing parameter 
a, (a,) which weighs the two contributions to the memory. All these parameters are q 
dependent. From their limit q -+ 0 (i.e., by extrapolating towards zero), we can extract 
in the longitudinal case information on DT, y and on the longitudinal viscosity q,; in the 
transverse case we get results for q (cf. discussion and table VI in [20]). 

The specific heat at constant volume C, and the diffusion constant D have been obtained 
via standard relations from the temperature fluctuation and the mean square displacement, 
which were both recorded during the MD runs. 
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Figure 4. (Continued) 

3. Results 

3.1. Static correlation functions 

In figure 2 we show the static structure factor S(q) for states I-VI. Similarly as in the 
experimental study [S ,  91, we find that the positions of the main maxima in g(r )  ( rp  - 4.8 
A) and in S(q)  (qp -1.45 A-') are practically insensitive to the temperature: Winter has 
interpreted this by an inhomogeneous expansion of the liquid, since during the expansion the 
distance of nearest neighbours remains unchanged, while the number of nearest neighbours 
decreases substantially. The approach to the critical point is characterized by the onset of a 
divergence of the experimental S(0): in the theoretical study this divergence is found to be 
less drastic than in experiment: only a moderate onset of this divergence is visible for the 
highest temperature, This is mainly due to the inadequacy of the interatomic forces used in 
the vicinity of the critical point. Such discrepancies between experiment and theory have 
already been observed in earlier studies on the static structure of expanded liquid Rb and 
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Cs using different liquid-state methods [38, 481. 
The static structure factor S(q) represents also the zero-order moment of the intermediate 

scattering function F (q .  t) .  The higher-order moments of F(q.  t) and of the other collective 
dynamic CFS are depicted in figure 3: for wl(q) we observe at lower temperatures a 
pronounced minimum which is smeared out as the temperature is increased, so that we 
finally observe simply a turning point at 1873 K. The position of the minimum (or the 
turning point) of w:(q) coincides with qp and hence is rather unaffected by the temperature. 
A similar behaviour will also be observed for several other functions which we discuss 
later; these effects are closely related to the so-called de Gennes narrowing [49] observed 
in S(q. w )  [SO] (or in F ( q ,  t )  [511) near qp. 

3.2. Dynamic correlation functions 

3.2.1. intermediate scattering function and dynamic structure factor. In figure 4 we present 
results for the intermediate scattering function F (q ,  t )  for two chosen temperatures: a 
drastic change in the behaviour of F ( q , t )  is observed as we increase the temperature. (i) 
At 350 K for small q-values pronounced oscillations are found; with increas*ing q ,  these 
oscillations are dampened, and F(q ,  t)  becomes in the vicinity of qp (-1.45 A-') and for 
larger q-values a simple, monotonically decreasing function: F ( q , t )  shows for q - qp 
the slowest decay (Le,, the broadest half-width) and has for large q-values a rather sharp, 
needle-like shape. (ii) If we consider an intermediate-temperature state (1373 K)-and this 
also holds for higher temperature-we again observe oscillations for small q-values which 
have, however, a much shorter wavelength; these oscillations are extinguished rapidly with 
increasing q and as low as from q - 0.4 A-' onwards F(q ,  t) is monotonically decreasing. 
The function then becomes very soon needle shaped with a much smaller half-width than 
the one observed at 350 K (note also the different time scales in figures 4(a) and 4(b)); 
furthermore only a much weaker broadening near qp is observed. At 1873 K the half-width 
of F ( q ,  f )  has become very small and remains nearly unchanged for intermediate and large 
q-values, no distinct broadening near qp may be observed. 

The above-mentioned behaviour of the half-width of F ( q ,  t )  near qp with increasing 
temperature may be understood nicely in terms of a very simple ansatz. This model, 
originally devised for hard spheres 152, 53, 541 and generalized to continuous potentials 
[51. 551 start3 from the MF-1 ansafz for the Laplace transform F ( q ,  z) of the intermediate 
scattering function F(q ,  f ) .  Following the arguments of Balucani and co-workers [51, 551, 
for q - qp .F'(q. z)  may be reasonably well approximated by 

C Kahl and S Kambayashi 

and hence 

q ( q )  represent?. a relaxation time, i.e., a parameter which usually is obtained in a least- 
squares fit to the computer data. Note that i f  we restrict ourselves furthermore to the simple 
Lovesey model for q(q) [26, 561 
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O I 2 'I [A-']  
Figure 5. Function au(g) as defined in equation (2)  as a function of q for Rb states I-VI 

S&) is entirely determined by static properties of the liquid. The differences between 
the fitted and the Lovesey values for q(q )  are of rather quantitative than qualitative nature 
(cf. figure S(b) and discussion below). In this study, however, we have calculated &(q) 
using q ( q )  as from an MF-I fit to the data of F ( q ,  I) .  &(q) is depicted in figure 5 and shows 
as a function of q a similar behaviour as the moments: a pronounced minimum observed 
for low temperatures near qp is smeared out as the temperature increases, so that finally for 
1873 K only a small dip remains. The position of this minimum (or dip) remains again 
insensitive to the temperature. According to the simple functional form (2) the curves of 
80 in figure 5 explain very nicely the two main effects described above. (i) The decreasing 
half-width near qp with increasing temperature is explained by the fact that for this q-value 
the pronounced minimum in &(q) observed for state I becomes very shallow for state VI. 
The rather large differences in S&) between states I and VI mean that density fluctuations 
decay much faster near qp for higher temperatures. (ii) The weak (strong) variation of the 
half-width in F ( q ,  f )  for high (or low) temperatures may also be explained by the shallow 
(deep) minimum of &(q) near qp.  

In figure 6 we present results for the dynamic structure factor S ( q ,  w )  for two selected 
temperatures (1373 and 1873 K). For 350 K (not displayed) a well defined inelastic peak up 
to q -1.1 k' is observed while beyond qp no distinct inelastic peak may be found. The 
quasielastic peak is sharp and becomes very large in the vicinity of qp. For intermediate 
temperatures the side-peak has vanished even for small q-values or is-perhapmovered by 
a rather broad central peak (o = 0); however, we cannot exclude that an inelastic peak may 
be observed for q-values smaller than those q-values accessible in the computer experiment 
(cf. figure 1). The half-width of the quasielastic peak is now much broader than for the lower 
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IW’l 

Figure 6. Dynamic structure facton S(q,  o) as functions of q and o for the following Rb 
slates: (a) IV (1373 K) and (b) VI (1873 K). Symbols: experimental neutmn-swttering results 
of Wnnter er al [8,91, full line: computer expnment. The full (broken) vertical lines indicate 
the theoretical (experimental) q-values 

temperature and near gP S(q, U )  decreases much more slowly as a function of o than at 
350 K (cf. also discussion on the half-width of F ( q ,  t )  near qp). For the highest-temperature 
state at 1873 K. the central peak is for small q-values very sharp and high; it then broadens 
and its height decreases rapidly as we approach qp. No inelastic peak can be resolved from 
the S(q. o) data at this temperature. In the comparison between experimental and theoretical 
results, agreement is found to be excellent up to 1373 K. At 1673 K differences between 
the two sets of data are small, while they become substantial for the high-temperature state 
VI. This is obviously-similarly to the differences in the static structure-related to the 
breakdown of the model for the interatomic forces: in the temperature range where the 
discrepancies are observed, Rb undergoes a metallnon-metal transition. The change in the 
electronic structure leads to a change in the interatomic interactions. The state dependence of 
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Figure 6. (Continued) 

the interatomic forces is also reflected in the asymmetry of the liquid-gas coexistence curve 
and the violation of the law of the rectilinear diameter over a comparatively large region 
of densities close to the critical point [57]. It has been shown that the critical behaviour 
of expanded liquid metals is influenced by this state dependence of the interactions [58] .  
Interatomic forces constructed from pseudopotentials and linear-response theory depend on 
the mean electron density, but do not account for the local variations of the forces arising 
from critical density fluctuations or an inhomogeneous structure of the liquid. 

In figure 7 we display the dispersion relation op(q) of the longitudinal current CF 
Cl(q,w) for all six Rb states: a dispersion relation oe(q) for S ( q , o )  could only be 
determined for the lowest temperatures (states I and 11). In the same figure we have also 
depicted the experimental results of Winter et al [8, 91 and the data of Copley and Rowe 
16, 71 at a slightly different temperature (320 K). Both the quantitative and the qualitative 
agreement are found to be very satisfactory. A similar behaviour as observed for the 
moments (figure 3) and the function &(q) (figure 5) is encountered for the dispersion 
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Figure 7. Dispersion relations w y ( q )  of the longitudinal cumnt CR Ct(y, w )  as functions of 
y for Rb states I-VI. Symbols: e, experimental dara of Copley and Rowe [6. 71 at a slightly 
different temperature (320 K); 0. experimental data of Winter elul [8. 91; full line. theoretical 
resulls. 

op(q)  near qp, We would like to add that model calculations with similar results have also 
been performed for these quantities 1591. 

Table 3. Adiabatic velocity of sound cs as obrdned [a) via MC lheory (c t  subsection 3.2) and (b) 
via an HF model far F ( y .  I )  from the computer experimenl for Rb states I-VI and the respective 
experimental values (calculated from thermodynamic propetties compiled for Rb on p 508 in 
L431). 

cs (m st) 

System Theory (a) Theory (b) Experiment 

I 1 3 3 0 i 6 0  I I O O i  40 1241 
I1 1020 & 60 880 *40 1235 
111 840 + 30 830 i 50 969 
IV 850 & 40 830 + 40 842 
V 780i 50 7 4 0 i  50 - 
VI 6 8 0 i 5 0  ~490 * 50 - 

A simple relation predicted by MC theory which is valid in the low-q region where op(q) 
and U&) differ only marginally [60, 611 (o;"(q) - odq) - c,q t ~ t , q ~ ~ ~ + O ( q " ~ ~ ) )  helps 
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us to recover a theoretical value for the adiabatic velocity of sound cs. The coefficient 01, 

is a measure for the so-called anomal (positive) dispersion relation, encountered both in 
theory [19, 201 and experiment [IO. 111 for temperatures near the melting point for Cs. 
For states I and II, a, was indeed found to be positive, for 1073 K the error bar of the 
as-vaIues has already become so large that we are no longer able to claim it to be positive. 
Finally, for states Tv-VI the positivity has disappeared completely and a linear behaviour 
for small q-values is clearly visible from figure I. The values obtained for c, from the 
above equation, along with another theoretical result and the experimental data (which are 
available only for states I to IV [43]) are compiled in table 3. Agreement is reasonable and 
of about the same quality as found for Cs [ZO]. 

Figure 8. (a) Relaxation time ~ ( 4 )  ofan MF-1 fit to the intermediate scattering function F ( y ,  I )  
as B function of y for Rb states I-VI. (b) Relaxation time rf(y) of M MF-I model for the 
intermediate scanering function F(y.1)  calculated in the Lovesey model 126. 561 Y a function 
of y; symbols: 1. 0, 11, 0; 111, a: IV. A; V. 0;  VI. +. 

We have interpreted the raw computer data of F ( q ,  t )  in terms of an HF and two MF 
models (using one and three model parameters). The generalized, q-dependent parameters 
appearing in these models have already been listed in subsection 2.3. As a representative 
of these quantities we have depicted the relaxation time q(q) of the MF-I model (figure 
8). From this figure-and similar results were encountered for other parameters, too-we 
observe an interesting tendency: the results for the parameters for the states of intermediate 
and high temperatures (III-VI) nearly coincide, while the curves of the low-temperature 
states (I and 11) are clearly separated from these data. Since on the other hand drastic 
changes in the dynamic CFS have been observed as we increase the temperature we have 
to make a more detailed investigation of via which channels temperature may enter these 
dynamic CFs. To this end we make again recourse to the above-mentioned simple MF-I 
model which in general describes the dynamic CFS quite accurately; this model is built up 
by: (i) the q-dependent moments; they are calculated from the static properties and here 
temperature enters via the PDF and the interatomic potentials; (ii) the q-dependent parameters 
of the model; they are obtained in a least-squares fit to the dynamic CFS of the computer 
experiment. 
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Figure 9. Normalized Wansveise CUtIentkFS C?,(y. t )  = Cdy. t)/$(q) as functions of q and I 
for the following Rb states: (a )  I(350 K) and (b) I V  (1373 K). 

Obviously, for states I and I1 temperature enters via both channels. For the states In- 
VI, however, the temperature dependence of the dynamic CFS is entirely determined by 
the moments since-within numerical accuracy-no temperature dependence of TI could 
be observed for these four states. Interestingly enough, our results for the numerically 
determined parameter q are assessed by the Lovesey model (sf(q)) (cf. (3)) [26, 561, both 
in a qualitative and quantitative way. We have depicted #(q)  in figure 8(b) for states I-VI 
along with the numerically determined fitting parameter r&): for states 111-VI the data 
practically coincide, while differences for states I and I1 are visible which marks the limits 
of the Lovesey model. Let us consider once more the prescription of how to determine $(q) 
(equation (3)): it is worthwhile mentioning that-although all the functions required in this 
expression are highly temperature dependent-the results for states In-VI are practically 
temperature independent. 
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Wgure 9. (Continued) 

3.2.2. Transverse current correlation functions. The transverse current CFS C&. t) are 
accessible only in the computer experiment. In figure 9 we have depicted results for C&, f )  

for two selected states (350 K and 1373 K). Again, similarly to F ( q ,  t )  drastic differences 
between low- and high-temperature states may be observed: the pronounced oscillations, 
encountered over the entire q-range for 350 K, are completely extinguished for the high- 
temperature state: C,(q, t )  becomes a simple monotonically decreasing function in time t; 
the half-width of C&, t )  is for all states-in contrast to F ( q ,  t)-monotonically decreasing 
as a function of q .  Only for the low temperatures may a slight broadening be observed. 
For intermediate and high temperatures the transverse dynamic behaviour becomes rather 
insensitive to temperature. 

The transverse dispersion relation oy (q )  for states I-VI is depicted in figure 10; despite 
the kinks in the curves which reflect the difficulties in properly determining the side 
peak, results are accurate enough to observe that the q-vector from which point transverse 
collective modes may be observed (qr )  increases nearly in a linear way with temperature. 
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Figurc 10. Dispersion relations w:(y) of the transverse current CFS C,(y. o) as functions of y 
for Rb stales I-VI. 

The transverse velocity of sound ctr defined for q near q, via c y  - ( q  - q,)w?(q) and qt 
are compiled in table 4. In the 19805, MD simulations for the determination of dynamic 
properties of both U systems and liquid metals have revealed the following: in liquid metals 
(both slightly below the respective melting points: Na-'293 K and K-300 K) the regions 
up to where longitudinal collective modes (41) and from where on transverse collective 
modes (q,) may be observed do overlap; for U systems, however, it was observed that 
q1 c q,, i.e., there exists a q-gap where neither longitudinal nor transverse modes can 
propagate. Estimates of q1 and q, in terms of rp (defined above) have been given by lacucci 
and McDonald (621 but could not be verified to hold over the entire temperature range. 
Furthermore, we encounter for expanded liquid metals a situation similar to U systems: 
we observe the existence of a region where neither longitudinal nor transverse collective 
modes may propagate: in our experiment we find that 41 becomes smaller than qt ;  in fact 
for the intermediate and high temperatures ql is well below the smallest q-value available 
in the simulation. Finally we want to point out that our q,-curves merge nicely into the data 
obtained by Mountain [16] for temperatures near the melting point. 

Again, the computer data for Ct(q, t )  have been studied in terms of an HF and of two 
MF models. If we look at Ct(q, t )  depicted in figure 9 and take into account the functional 
form of the HF model, i.e., C,(q. t )  = mf(q)e-"q2' i t  is obvious that the quality of this HF 
fit to an oscillating C,(q. t )  cannot be satisfactory for states I and 11: in fact, least-squares 
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Table 4. yt, the y-vector from whereon transverse collective modes u e  supported, and c,. the 
transverse velocity of sound. (both as defined in the text) for Rb states I-VI. 

I 0.170 1382 
II 0.203 I137 
111 0.665 810 
IV 0.716 501 
V 0.833 757 
VI 0.926 708 

sums (LSQs) of up to five are observed. Only for states III-VI where all the oscillations in 
time have vanished do we get LsQs of below one. 

0.w 

0 
o I 2 *iA-' i 

Figure 11. Dimensionless genenlized kinetic shear viscosity v'(y) = v(y)q2Ar (AI = 3 fs) as 
a function of y obtained In an HF fit to the tmsverse current CF C,(q, I) for Rb states 1 lo VI. 

In figure 11 we have displayed the reduced dimensionless kinetic shear viscosity 
v* = vq2At (A t  = 3 fs) as a function of q for states I-VI. Similarly as observed for 
the model parameters for F ( q ,  t )  we find clearly separated curves for the low temperatures, 
while again the results of states III-VI practically coincide. This also holds for r&), the 
relaxation time of the MF-I model, displayed in figure 12. Again this means that temperature 
effects in the transverse dynamic structure may enter only via the static moment w:(q) .  
However, since this moment is much less temperature dependent than the longitudinal 
moment w f ( q )  (cf. figure 3) this also explains the small quantitative differences in Ct(q, t) 
observed for intermediate and higher temperatures and discussed above (cf. figure 9). 

If we compare the results for the parameters of the MF-I and MF-3 models, we observe 
for all temperatures the following: for small q-values two different relaxation times q[(q) 
and q&) were obtained in the MF-3 model; they differ approximately by one order of 
magnitude. Near q - 0.4 A-l-and this is rather insensitive of temperature-the smaller 
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Figure 12. Relaxation t i m e  r,(q), and r, i(q) (broken line in  the right panel) as functions of 
y as obtained in an MF-I or MF-3 fit .  respcctively Io the m s v e r s e  Current CF C,(q, t )  for Rb 
states I-VI; the right panel displays the curves for states I (top) and 111 (bottom). 

relaxation time (say rl l (q))  merges into the curve of q(q ) .  i.e., the relaxation time of the 
one-parameter model. Hence, we conclude that for low q-values we have two mechanisms 
to describe the decay of transverse modes: a fast ('binary') and a slow ('collective') one. 
As we increase q .  the slow relaxation process vanishes completely, i.e., the decay of the 
transverse modes is entirely supported by the fast 'binary' process. Similar observations 
have also been made by the present authors for liquid Cs near the melting point 120, 631 
and by Balucani et al for low temperatures [17, 181. 

Table 5. (a) Diffusion constant D in m2 s-l as obtained from the m m  square displacement 
ID = lim,+x(l,'6t)(lr(t) - r(0)1*)) from the computer experiment Tor Rb smrs I-VI and the 
respective experimental values lp 845 in [43]; cf. discussion in the text). (b) Specific heat at 
constant volume C, as obtained from the temperahlre fluctuations in the computer experiment 
(cf. 151) of [ZO]) for Rb states i-VI md the respective experimental values (taken from a table 
on p 508 in [431). 

D (m' S-I) x C, (J g-' K - ' 1  

System m o r y  Experiment Theory Experiment 
I 0.305 i (0.4 x 0.352 i 0.01 0.318 ?c 0.03 0.336 
II 0.378 i (0.6 x IO-') 0.418 i 0.02 0.326 i 0.02 0.332 
I l l  3.59 i (0.6 x IO-') 3.66 i 1.8 0.215 i 0.01 0.251 
IV 5.86 i (0.9 x IO-') 6.05 i 4.4 0.199 i 0.01 0.229 
V 8.56 i (0.8 x IO-') 9.35 i 8.4 0.187i0.01 - 
VI 12.5 i (0.2 x IO-? 14.2 i 15 0.184-tO.Ol - 

3.3. Thermodynamic and elastic properties 
Again-as already observed in our previous study on liquid Cs [ZOI-it has turned out 
that a proper and reliable determination of several elastic and thermodynamic properties 
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from the computer experiment is extremely difficult. The most reliable results may in  
general be obtained for those quantities which can be determined directly from the computer 
experiment, such as the diffusion constant (from the mean square displacement) and the 
specific heat (from the temperature fluctuations), both compiled in table 5 .  The main 
problem in a proper determination of these quantities is caused by the difficulties in finding 
the best but at the same time a reliable fit to the computer data (cf. discussion in [20]). In this 
contribution extrapolations towards q = 0 have been performed using linear/quadratic/cubic 
least-squares fits, including four/six/eight q-points; if the sum of the least squares is of a 
reasonable size then - according to our experience-in general, the resulting three data are 
rather consistent. The errors noted in  the tables express these deviations from the mean 
value. 

(i) The adiabatic velocity of sound cs has already been discussed above (cf. subsection 
3.2 and table 3). 

(ii) The specific heat C, was obtained from the temperature fluctuation recorded during 
the simulation via equation (51) of [20]. In the tables of [43], experimental values for C, 
are tabulated only for a temperature range covering states I to IV. The differences between 
theory and experiment are on the average 10-15%. 

(iii) The diffusion constant D has been determined from the mean square displacement 
recorded during the simulation. The discussion of the results turns out to be rather delicate: 
Tanaka 1481 observed in his study on the sturic properties of expanded Rb (where he also 
calculated the diffusion constant), that ‘the computed value of D is rather sensitive to the 
choice of the pair potential’. In fact, in a direct comparison between these two theoretical 
studies we find for two comparable states (i.e., states ID and VI of this study) differences 
of 10 and 15%. In table 5 we have tried to present a comparison between theoretical and 
experimental results for D. Concerning the experimental data for the diffusion constant 
the following has to be mentioned: i n  [43] (p 845) three interpolation formulae for D as 
functions of T are proposed which are supposed to give a recipe for the determination of 
an experimental value for D .  However, no limitations are marked concerning their validity 
in temperature. The value listed in the ‘experiment’ column of table 5 is the average over 
these three expressions, the error is determined from the deviation from this mean value. 
The large errors of the last two or three states indicate that we have obviously exceeded the 
range of validity of at least one of these three expressions. 

In an effort to assess our results we have then looked for other possibilities for 
determining D. Balucani er nf [21, 221 determined their transport coefficients via a 
generalized Green-Kubo formalism and arrive at a universal expression for all alkali metals 
D = (u2/r )T*D* where T* is the reduced temperature. U and r are length and time 
units characteristic for the state and the metal. D* is some ‘universal’ simulation constant. 
Although this equation seems to give good results for all alkali metals near the melting 
point, i t  could not reproduce our results over this large temperature range. 

We have tried an analysis of D in terms of the half-width w;/’(q) of the quasielastic 
peak of S ( q .  o), as proposed in [50]. It is suggested that near qp, o;”(q) can be described 
i n  a reliable way by w:I2(q) = D ~ q ~ d ( q ) [ S ( q ) ] - ’  and d(q )  = [q - j&) + 2j&)]- ’ ,  
the j ; ( x )  being the spherical Bessel functions of order i and I = qu; DE is the Enskog 
diffusion constant. U is a hard-core diameter not specified more closely. Winter er al [8, 9, 
341 used this expression to determine DE from their results. A similar interpretation of our 
data showed that the ambiguity in the definition of U yields a rather large uncertainty in the 
actual value of DE: variation in U by 10% around the first node in @ ( I )  causes differences 
in DE of 20%. If we take U to be the first zero in @(r) ,  we obtain reasonable agreement 
with our theoretical results for D of states 111-V listed in table 5. 
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(iv) The sound attenuation coefficient i-' and the thermal diffusivity DT have both been 
determined from the HP parameters to F ( q ,  f). Experimentally DT is determined from the 
heat conductivity K via & = K/(,oC,,), C,, being the specific heat at constant pressure; r 
may then be obtained via r = ( 4 ( y  - 1) + q l / p M ) ,  with y = Cp/Cv and q1 being the 
longitudinal viscosity. However, in metals the largest contribution to the heat conductivity 
stems from the electrons, while phonons contribute only to a minor extent. Bodensteiner 
[IO] has estimated that for liquid Cs just above the melting point the contribution of the 
phonons to the heat conductivity (which we obtain from the computer experiment) is of 
about two orders of magnitude smaller than the macroscopic value. Similar results have 
been summarized by Shimoji [64]. 

(v) Finally the kinetic shear viscosity U may be determined both from an HF-fit and 
an MF-I-fit to C,(q, I ) .  For the determination of v we found the best internal consistency 
for the computer experiment as well as the best agreement with experiment among all 
thermodynamic and elastic properties discussed in this section. Theoretical values obtained 
via both routes are compiled along with the experimental values in table 6. Only for the 
low-temperature states are differences from the experiment observed: this becomes clear if 
we consider what we have noted above on the inadequacy of a simple non-oscillating HF 
model to describe C,(q, f )  which shows oscillations in time for low temperatures. However, 
as we increase the temperature C&, t )  becomes a simple monotonically decaying function, 
and may therefore be approximated very well by the Gaussian shape of the HF model. The 
observed LSQ values are of reasonable size and hence the values for v have to be considered 
as reliable. 

Table 6. Kinetic r h w  viscosity U in m2 5-' as obtained from the computer enperiment 
((a): HF fit nnd (b) M F - I  fit to C,(q. t ) )  for Rb states I-VI m d  the respective experimental values 
(taken from a table on p 781 in 1431). 

System 

I 
II 
III 
IV  
V 
V I  

"(In* s-') x 10-6 

Theory (a) Theory (b) Ehperiment 

0.430 i 0.02 0.416 f 0.01 0.326 
0.384 i 0.02 0.367 * 0.01 0.301 
0.103 * 0.005 0.09s i 0.00s O.IZ0 
0.117i0.005 0.117i0.005 0.114 
0.124 i 0.005 0.123 i 0.005 O.IZ0 
0.124 i0.005 0. IZI  i 0.005 0.136 

Concluding this subsection, we would like to point out that the good results obtained 
for v are-unfortunately-not the rule; in the determination of thermodynamic and elastic 
quantities we rather have to expect typically uncertainties and error bars such as those 
encountered for the other quantities. 

4. Conclusion 

In this contribution we have reponed on a computer experiment for the determination of the 
dynamic properties of liquid rubidium, investigated over a temperature range from above the 
melting point up to near the critical temperature (1873 K). The present paper-the first of 
two contributions-is concerned with collective CFs and related quantities only. Four of the 
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investigated states are exactly those as considered recently in a neutron-scattering experiment 
by Winter and co-workers. For both the static and dynamic structure we find good qualitative 
and quantitative agreement between theory and experiment up to intermediate temperatures. 
Only for the highest-temperature state are substantial discrepancies observed. 'They may 
be attributed to the simple model for the interatomic forces, i.e.. a potential based on 
an Ashcroft empty-core pseudopotential: this model depends only on the mean electronic 
density and hence is not able to take into account local variations of the forces arising from 
critical density fluctuations or an inhomogeneous structure of the liquid, both encountered 
in the vicinity of the critical point, where Rb undergoes a metalhon-metal transition. Both, 
F ( q .  t )  and S(q, w )  show in the vicinity of qp a characteristic broadening: in both cases 
the half-widths turn out to be strongly temperature dependent. This effect-known as the 
de Gennes narrowing-may be understood both qualitatively and quantitatively in terms of 
rather simple models based entirely on static properties. This narrowing is also reflected 
in the behaviour of some characteristic functions in q near qp (dispersion relations, static 
moments): they show for low temperatures pronounced minima or maxima, which become 
smeared out for higher temperatures. Good agreement between theory and experiment is also 
observed for the longitudinal dispersion relation wr(q) ,  determined from the longitudinal 
current CFs (an inelastic peak of S(g, w )  may be recovered only for low temperatures). 
Only for the lowest temperatures (states I and U) the dispersion turns out to be anomalous 
(positive enhancement over the linear behaviour described by the velocity of sound); for the 
other states, a clear linear dispersion may be observed. The model parameters of the HF and 
the MF models become temperature independent for intermediate and high temperatures and 
practically coincide, while the lower-temperature curves are clearly separated. This means, 
that-in terms of these models-the temperature influence on these CFs may enter only via 
the static moments. 

Similar-though much weaker-characteristic differences between low- and high- 
temperature states are observed for the transverse current CFS C,(q.  t). Transverse collective 
modes may only be supported from (a non-zero) qt onwards. For low temperatures we 
find an overlap of the regions up to where longitudinal collective modes are observed 
(q 4 41) and from where on transverse collective modes are encountered ( q  3) qt); for 
higher temperatures, however, a gap between q1 and qr (i.e., q1 < qt) is found, similar to 
the gap observed for Lennard-Jones systems. From the results of one- and three-parameter 
MF-mOdd calculations for C,(q.  t )  we can conclude that for low q-values (i.e., typically 
less than 0.3 A-'), two mechanisms can be made responsible for the decay of transverse 
modes: a fast 'binary' and a slow 'collective' one; for higher q-values only the fast process 
survives, the slow one being completely extinguished: these results are observed for all 
temperatures investigated. 

Once more it has been confirmed that a reliable and accurae determination of several 
elastic and thermodynamic properties from the computer experiment is extremely difficult 
and sometimes turns out to be even impossible. Differences between theoretical and 
experimental data (which, in turn, are rather difficult to obtain in particular for the higher 
temperatures) are in general of about 15-20%. Several quantities, such as the sound 
attenuation coefficient or the thermal diffusivity have-apart from the phonon contribution- 
an important electronic contribution. In these cases a direct comparison with the computer- 
simulation results (which gives us the phonon contribution only) is not possible. In general 
we think that a determination of the thermodynamic and elastic properties in terms of a 
generalized Green-Kubo formalism seems to be a more reliable approach. 
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